Data mining with imbalanced class distributions: concepts and methods
نویسندگان
چکیده
Some real world data mining applications present imbalanced or skewed class distributions. In these domains, the underrepresented classes are often the ones we are more interested in. However, most learning algorithms are not able to induce meaningful classifiers in some imbalanced domains. One reason for this poor performance is that learning algorithms tend to focus in abundant classes to maximize classification accuracy. This paper reviews recent work in this subject, focusing in concepts and methods to deal with imbalanced data sets.
منابع مشابه
Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملAn Improved Algorithm for SVMs Classification of Imbalanced Data Sets
Support Vector Machines (SVMs) have strong theoretical foundations and excellent empirical success in many pattern recognition and data mining applications. However, when induced by imbalanced training sets, where the examples of the target class (minority) are outnumbered by the examples of the non-target class (majority), the performance of SVM classifier is not so successful. In medical diag...
متن کاملLearning to Classify Data Streams with Imbalanced Class Distributions
Streaming data is pervasive in a multitude of data mining applications. One fundamental problem in the task of mining streaming data is distributional drift over time. Streams may also exhibit high and varying degrees of class imbalance, which can further complicate the task. In scenarios like these, class imbalance is particularly difficult to overcome and has not been as thoroughly studied. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009